Programming Logic and Design

Eighth Edition

Chapter 3

Understanding Structure
Objectives

In this chapter, you will learn about:

• The disadvantages of unstructured spaghetti code
• The three basic structures—sequence, selection, and loop
• Using a priming input to structure a program
• The need for structure
• Recognizing structure
• Structuring and modularizing unstructured logic
The Disadvantages of Unstructured Spaghetti Code

• **Spaghetti code**
 – Logically snarled program statements
 – Often a complicated mess
 – Programs often work but are difficult to read and maintain
 – Confusing and prone to error

• **Unstructured programs**
 – Do not follow the rules of structured logic

• **Structured programs**
 – Follow the rules of structured logic
Figure 3-1 Spaghetti code logic for washing a dog

Don’t Do it
This example does not use good programming style. By the end of the chapter, you will know how to make this example structured, which will make it less confusing.
Understanding the Three Basic Structures

• **Structure**
 – Basic unit of programming logic
 – **Sequence structure**
 • Perform actions or tasks in order
 • No branching or skipping any task
 – **Selection structure (decision structure)**
 • Ask a question, take one of two actions
 • Often called *if-then-else*
 • Dual-alternative *ifs* or single-alternative *ifs*
 – **Loop structure**
 • Repeat actions while a condition remains true
Understanding the Three Basic Structures (continued)

Figure 3-2 Sequence structure
Understanding the Three Basic Structures (continued)

Figure 3-3 Selection structure
• Dual-alternative *ifs*
 – Contains two alternatives
 – The *if-then-else* structure

```plaintext
if someCondition is true then
  do oneProcess
else
  do theOtherProcess
endif
```
Understanding the Three Basic Structures (continued)

- **Single-alternative ifs**

  ```
  if employee belongs to dentalPlan then
  deduct $40 from employeeGrossPay
  
  An else clause is not required
  ```

- **null case**

 Situation where nothing is done
Understanding the Three Basic Structures (continued)

Figure 3-4 Single-alternative selection structure
Understanding the Three Basic Structures (continued)

• **Loop structure**
 – Repeats a set of actions while a condition remains true
 • **Loop body**
 – Also called *repetition* or *iteration*
 – Condition is tested first in the most common form of loop
 – The `while...do` or `while` loop
Understanding the Three Basic Structures (continued)

Figure 3-5 Loop structure
Understanding the Three Basic Structures (continued)

• **Loop structure**

```plaintext
while testCondition continues to be true
    do someProcess
endwhile

while you continue to be hungry
    take another bite of food
    determine if you still feel hungry
endwhile
```
Understanding the Three Basic Structures (continued)

• All logic problems can be solved using only sequence, selection, and loop

• Structures can be combined in an infinite number of ways

• **Stacking structures**
 – Attaching structures end-to-end

• **End-structure statement**
 – Indicates the end of a structure
 – The `endif` statement ends an if-then-else structure
 – The `endwhile` statement ends a loop structure
Understanding the Three Basic Structures (continued)

Figure 3-6 Structured flowchart and pseudocode with three stacked structures

```
stepA
stepB
if conditionC is true then
  stepD
else
  stepE
endif
while conditionF is true
  stepG
endwhile
```
• Any individual task or step in a structure can be replaced by a structure

• **Nesting structures**
 – Placing one structure within another
 – Indent the nested structure’s statements

• **Block**
 – A group of statements that execute as a single unit
Figure 3-7 Flowchart and pseudocode showing nested structures—a sequence nested within a selection
Figure 3-8 Flowchart and pseudocode showing nested structures—a loop nested within a sequence, nested within a selection
Understanding the Three Basic Structures (continued)

Figure 3-9 Flowchart and pseudocode for a selection within a loop within a sequence within a selection
• Structured programs have the following characteristics:
 – Include only combinations of the three basic structures
 – Each structure has a single entry point and a single exit point
 – Structures can be stacked or connected to one another only at their entry or exit points
 – Any structure can be nested within another structure
Using a Priming Input to Structure a Program

• **Priming input** (or **priming read**)
 – Reads the first input data record
 – Is outside the loop that reads the rest of the records
 – Helps keep the program structured

• Analyze a flowchart for structure one step at a time

• Watch for unstructured loops that do not follow this order
 – First ask a question
 – Take action based on the answer
 – Return to ask the question again
Using a Priming Input to Structure a Program

Figure 3-14 Structured, but nonfunctional, flowchart of number-doubling problem
Using a Priming Input to Structure a Program (continued)

Figure 3-15 Functional but unstructured flowchart
Figure 3-16 Functional, structured flowchart for the number-doubling problem
Figure 3-17 Structured but incorrect solution to the number-doubling problem

Don’t Do It
This logic is structured, but flawed. When the user inputs the eof value, it will incorrectly be doubled and output.
Understanding the Reasons for Structure

• **Clarity**—unstructured programs are confusing
• **Professionalism**—other programmers expect it
• **Efficiency**—most languages support it
• **Maintenance**—other programmers find it easier to read
• **Modularity**—easily broken down into modules
Recognizing Structure

Structured Flowcharts?

Figure 3-18 Example 1

Figure 3-19 Example 2
Recognizing Structure (continued)

An Unstructured Flowchart

Figure 3-20 Example 3
Recognizing Structure (continued)

Figure 3-21 Steps to structure the dog-washing process

Don’t Do It
This loop is not structured because its logic does not return to the question after its body executes.
Recognizing Structure (continued)

Figure 3-22 Structured dog-washing flowchart and pseudocode

Recognizing Structure (continued)
Recognizing Structure (continued)

Figure 3-23 Modularized version of the dog-washing program
Summary

• Spaghetti code
 – Statements that do not follow rules of structured logic

• Three basic structures
 – Sequence, selection, and loop
 – Combined by stacking and nesting

• Priming input
 – Statement that reads the first input value prior to starting a structured loop
Summary (continued)

- Structured techniques promote:
 - Clarity
 - Professionalism
 - Efficiency
 - Modularity

- Flowcharts can be made structured by untangling

- Logical steps can be rewritten to conform to the three structures